About me

sdr

I am a Senior Research Engineer (förste forskningsingenjör) at the Department of Computing Science of Umeå University, Sweden.

My current research is related to eigenvalue problems, numerical linear algebra, high performance computing and task-based parallelism. My PhD dissertation focused on GPU computation, fast direct linear system solvers and image denoising.

Curriculum vitae (CV): download (27. October, 2019)

Work emails: mirko.myllykoski@umu.se, mirkom@cs.umu.se

Personal email: first_name.last_name@gmail.com

ORCID: [0000-0002-3689-0899]

Other: Umeå university, Github, LinkedIn, ResearchGate

StarNEig library

StarNEig library aims to provide a full suite of task-based algorithms for solving nonsymmetric dense (generalized) eigenvalue problems. The library is built on top of the StarPU runtime system and targets both shared memory and distributed memory machines. Some components of the library support GPUs.

The library is open source and published under BSD 3-Clause licence. The library and the accompanying documentation are available at: https://nlafet.github.io/StarNEig.

Research papers

In press and submitted

  • Mirko Myllykoski, Carl Christian Kjelgaard Mikkelsen: Introduction to StarNEig — A Task-based Library for Solving Nonsymmetric Eigenvalue Problems, Accepted to and presented at PPAM 2019, arXiv:1905.04975
  • Carl Christian Kjelgaard Mikkelsen, Mirko Myllykoski: Parallel Robust Computation of Generalized Eigenvectors of Matrix Pencils, Accepted to and presented at PPAM 2019

Peer reviewed publications

  • Mirko Myllykoski: A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix in Real Schur Form, In Parallel Processing and Applied Mathematics, 12th International Conference, PPAM 2017, Lublin, Poland, September 10-13, 2017, Revised Selected Papers, Part I, Lecture Notes in Computer Science, Vol. 10777, Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. (eds), Springer International Publishing, pp. 207-216, 2018, doi: 10.1007/978-3-319-78024-5_19 (link, postprint, source code)
  • Mirko Myllykoski, Tuomo Rossi, Jari Toivanen: On solving separable block tridiagonal linear systems using a GPU implementation of radix-4 PSCR, Journal of Parallel and Distributed Computing, 115, pp. 56-66, 2018, doi: 10.1016/j.jpdc.2018.01.004 (link, postprint, source code)
  • Mirko Myllykoski, Roland Glowinski, Tommi Kärkkäinen, Tuomo Rossi: A GPU-Accelerated Augmented Lagrangian Based L¹-mean Curvature Image Denoising Algorithm Implementation, In WSCG 2015 : 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision’2015 : Full Papers Proceedings, Gavrilova M., Skala V. (eds.), Union Agency, pp. 119-128, ISBN 978-80-86943-65-7, 2015 (link, full paper, jyx, source code)
  • Mirko Myllykoski, Roland Glowinski, Tommi Kärkkäinen, Tuomo Rossi: A New Augmented Lagrangian Approach for L¹-mean Curvature Image Denoising, SIAM Journal on Imaging Sciences, 8 (1), pp. 95-125, 2015, doi: 10.1137/140962164 (link, full paper, jyx, source code)
  • Mirko Myllykoski, Tuomo Rossi: A parallel radix-4 block cyclic reduction algorithm, Numerical Linear Algebra with Applications, 21 (4), pp. 540-556, 2014, doi: 10.1002/nla.1909 (link, postprint, jyx)
  • Mirko Myllykoski, Tuomo Rossi, Jari Toivanen: Fast Poisson Solvers for Graphics Processing Units, In Applied Parallel and Scientific Computing, 11th International Conference, PARA 2012, Helsinki, Finland, Lecture Notes in Computer Science, Vol. 7782, Manninen P., Öster P. (eds), Springer Berlin Heidelberg: Berlin, Germany, pp. 265-279, 2013, doi: 10.1007/978-3-642-36803-5_19 (link, postprint, jyx, source code)

Reports and deliverables

  • Mirko Myllykoski, Carl Christian Kjelgaard Mikkelsen, Angelika Schwarz, Bo Kågström: D2.7 Eigenvalue solvers for nonsymmetric problems, public NLAFET deliverable, 2019 (download, link)
  • Lars Karlsson, Mahmoud Eljammaly, Mirko Myllykoski: D6.5 Evaluation of auto-tuning techniques, public NLAFET deliverable, 2019 (download, link)
  • Bo Kågström et al.: D7.8 Release of the NLAFET library, public NLAFET deliverable, 2019 (download, link)
  • Mirko Myllykoski, Lars Karlsson, Bo Kågström, Mahmoud Eljammaly, Srikara Pranesh, Mawussi Zounon: D2.6 Prototype Software for Eigenvalue Problem Solvers, public NLAFET deliverable, 2018 (download, link)
  • Mirko Myllykoski, Carl Christian Kjelgaard Mikkelsen, Lars Karlsson, Bo Kågström: Task-Based Parallel Algorithms for Reordering of Matrices in Real Schur Forms, NLAFET Working Note WN-11, 2017. Also as Report UMINF 17.11, Department of Computing Science, Umeå University, SE-901 87 Umeå, Sweden (download, UMINF)
  • Carl Christian Kjelgaard Mikkelsen, Mirko Myllykoski, Björn Adlerborn, Lars Karlsson, Bo Kågström: D2.5 Eigenvalue Problem Solvers, public NLAFET deliverable, 2017 (download, link)

Conferences, workshops and meetings

  • How two-sided matrix transformation algorithms can benefit from task parallelism, Nordic Numerical Linear Algebra meeting, Stockholm, Sweden, October 21-22, 2019 (abstract, slides)
  • Task-based, GPU-accelerated and Robust Algorithms for Solving Dense Nonsymmetric Eigenvalue Problems, Swedish eScience Academy, Lund, Sweden, October 15-16, 2019 (poster)
  • Introduction to StarNEig — A Task-based Library for Solving Nonsymmetric Eigenvalue Problems, 13th International Conference on Parallel Processing and Applied Mathematics (PPAM 2019), Bialystok, Poland, September 10,  2019 (slides)
  • Co-authored: Parallel Robust Computation of Generalized Eigenvectors of Matrix Pencils (presented by Carl Christian Kjelgaard Mikkelsen), 13th International Conference on Parallel Processing and Applied Mathematics (PPAM 2019), Bialystok, Poland, September 10, 2019 (slides)
  • Poster: Task-Based Algorithms for Eigenvalue Problems, Swedish eScience Academy, Uppsala, Sweden, October 16-17, 2018 (poster)
  • Poster: A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix in Real Schur Form, Swedish eScience Academy, Umeå, Sweden, October 11-12, 2017 (poster, presentation)
  • A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix in Real Schur Form, 12th International Conference on Parallel Processing and Applied Mathematics (PPAM 2017), Dublin, Poland, September 13, 2017 (slides)
  • Poster: How Fast Direct Solvers Can Benefit from GPU-acceleration, Householder Symposium XX on Numerical Linear Algebra, Blacksburg, Virginia, USA, June 20, 2017 (poster)
  • Co-authored: Extreme-Scale Eigenvalue Reordering in the Real Schur Form (presented by Carl Christian Kjelgaard Mikkelsen), SIAM Conference on Computational Science and Engineering (CSE17), Atlanta, Georgia, USA, February 28, 2017 (slides)
  • A GPU-Accelerated Augmented Lagrangian Based L¹-mean Curvature Image Denoising Algorithm Implementation, 23rd International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2015, Plzen, Czech Republic, June 9, 2015 (slides)
  • Poster: A New Augmented Lagrangian Approach for L¹-mean Curvature Image Denoising, RICAM Special Semester on New Trends in Calculus of Variations, Workshop 2: Variational methods in imaging, Linz, Austria, October 27-31, 2014 (poster)
  • Cyclic Reduction Type Poisson and Helmholtz Solvers on a GPU, SIAM Conference on Parallel Processing for Scientific Computing, Portland, Oregon, USA, February 18, 2014 (slides)
  • Block Cyclic Reduction Type Fast Poisson Solvers for GPU, Workshop on the State-of-the-Art in Scientific and Parallel Computing (PARA2012), Helsinki, Finland, June 13, 2012 (slides)

Theses

  • PhD thesis: On GPU-Accelerated Fast Direct Solvers and Their Applications in Image Denoising, Jyväskylä, Finland: University of Jyväskylä. Jyväskylä studies in computing, 218, ISBN 978-951-39-6277-7, ISSN 1456-5390, 2015 (download, jyx, Google Docs)
  • Master’s thesis (Pro gradu, in Finnish): Separoituvien yhtälöryhmien ratkaiseminen ohjelmoitavalla näytönohjaimella (Solving separable linear systems on GPU), 2011 (download, Google Docs)
  • Bachelor’s thesis (Kandidaatintutkielma, in Finnish): Rinnakkaistuvat nopeat Poisson-ratkaisijat (Parallel Fast Poisson Solvers), 2010 (download, Google Docs)

Miscellaneous

  • A quick introduction to StarPU (Google Slides)
  • Cyclic Reduction Type Poisson and Helmholtz Solvers on a GPU (extended version), Farhat Research Group Seminars, Stanford, California, USA, February 26, 2014 (slides)
  • Alberto Quintero, Alexandra Rohde O’Sullivan Freltoft, Anna Igolkina, Mirko Myllykoski, Nitya Dixit, Fabian Rost (instructor): Morphogenesis and Dynamics of Multi-cellular Systems, ECMI Newsletter 52, 2012 (link)